Improving corn and soybean yields with starter and foliar fluid fertilizers

Dorivar Ruiz Diaz and Nathan Mueller
Kansas State University

Fluid Fertilizer Foundation Forum
February 18-20, 2013
Starter and foliar including micronutrients

- Fields with high corn and soybean yields may benefit from micronutrients.
- Typically low micronutrient requirements can be combined with a starter program.
- The use of foliar micronutrient application in combination with soil-applied program.
- Evaluate nutrient sufficient or potential “hidden hunger”
Objectives

• Assessment of corn and soybean grain yield and early growth response to starter fertilizer with micronutrients.

• Evaluate responses with and without additional foliar fertilizers.

• Evaluate foliar nitrogen in corn (derived from methylene ureas and triazone).
Methods

• Factorial Arrangement in RBCD with Two Factors:

• Starter: None, NPK, NPK + micronutrients.

• Foliar: None, NPK, NPK + micronutrients.
 – V6 for Corn and R1 for soybean.

• Micronutrient mix:
 – Mn, Zn, Cu as EDTA
 – Fe as HEDTA, and B.
Methods

• Measurements
 – 0- to 6-inch soil samples
 – Whole corn plants at V6
 – Soybean trifoliolates at R1
 – Tissue sampling after foliar fertilizer application
 – Grain yield

• Statistics
 – ANOVA using the GLIMMIX procedure of SAS
Methods

• Six irrigated locations for corn during 2010, 2011 and 2012.

• Six irrigated locations for soybean during 2010, 2011 and 2012.

• Optimum N,P,K fertility, hybrids, irrigation, and population.

• N, P, K: 4-10-10 and 10-10-10.
Methods

Nutrient application rates

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>P2O5</th>
<th>K2O</th>
<th>Fe</th>
<th>Zn</th>
<th>Cu</th>
<th>Mn</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPK</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NPK + micros</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Foliar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPK</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NPK + micros</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Corn biomass V6 - across locations

![Bar graph showing biomass V6 across different starter treatments.]

- **None**
- **NPK**
- **NPK + M**

The graph shows that the biomass V6 is significantly different among the treatments. The letters a, b, and p<0.05 indicate the significance of the differences:
- **a** for NPK and NPK + M
- **b** for None

Starter Treatment

- **None**
- **NPK**
- **NPK + M**

Biomass V6 (g/plant)

- 0
- 1
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15

p<0.05
Corn nutrient uptake - V6

Across locations
Corn grain yield - across locations

- Starter Treatment: None, NPK, NPK + M
- Grain yield (bu/acre): 215, 223, 224
- p=0.02

Across locations
Responsive location - Rossville 2012

Starter Treatment
- None
- NPK
- NPK + M

Grain yield (bu/acre)
- 0
- 100
- 120
- 140
- 160
- 180
- 200
- 220
- 240

192 (c)
203 (b)
215 (a)

p<0.001

Starter Treatment
- None
- NPK
- NPK + M

KANSAS STATE UNIVERSITY
Responsive location - Rossville 2012

<table>
<thead>
<tr>
<th>Soil parameter</th>
<th>Rossville</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.8</td>
</tr>
<tr>
<td>Soil test P (ppm)</td>
<td>24</td>
</tr>
<tr>
<td>Soil test K (ppm)</td>
<td>114</td>
</tr>
<tr>
<td>CEC (meq/100g)</td>
<td>4.5</td>
</tr>
<tr>
<td>OM (%)</td>
<td>0.9</td>
</tr>
<tr>
<td>Sand (%)</td>
<td>80</td>
</tr>
<tr>
<td>Clay (%)</td>
<td>5</td>
</tr>
</tbody>
</table>
Responsive location - Tissue analysis

Sufficiency range: Mills and Jones, 1996
Corn grain yield - foliar

Across locations

Starter Treatment
- None
- NPK
- NPK + M

Grain yield (bu/acre)
- 0
- 100
- 120
- 140
- 160
- 180
- 200
- 220
- 240

p=0.702
Foliar nitrogen - corn

- Derived from methylene ureas and triazone
- Slower drying on the leaves?
Foliar nitrogen corn

Across locations

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Yield (bu/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No foliar</td>
<td>220</td>
</tr>
<tr>
<td>Foliar N</td>
<td>230</td>
</tr>
</tbody>
</table>

$p = 0.2$
Soybean
Soybean yield - starter

Across locations

<table>
<thead>
<tr>
<th>Starter Treatment</th>
<th>Yield (bu/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>63</td>
</tr>
<tr>
<td>NPK</td>
<td>66</td>
</tr>
<tr>
<td>NPK + M</td>
<td>68</td>
</tr>
</tbody>
</table>

p=0.082

KANSAS STATE UNIVERSITY
Soybean yield - foliar

Across locations

Yield (bu/acre)

Starter Treatment
None NPK NPK + M

p=0.901
Field variability soil Zn

<table>
<thead>
<tr>
<th></th>
<th>Ellis Co</th>
<th>1.7</th>
<th>2.0</th>
<th>2.5</th>
<th>1.4</th>
<th>2.0</th>
<th>1.5</th>
<th>1.4</th>
<th>1.5</th>
<th>1.7</th>
<th>2.0</th>
<th>1.7</th>
<th>1.6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1.4</td>
<td>1.2</td>
<td>1.7</td>
<td>1.5</td>
<td>1.3</td>
<td>1.1</td>
<td>1.4</td>
<td>2.0</td>
<td>1.1</td>
<td>1.4</td>
<td>1.4</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.6</td>
<td>1.9</td>
<td>1.6</td>
<td>2.1</td>
<td>1.4</td>
<td>1.4</td>
<td>1.6</td>
<td>2.2</td>
<td>1.8</td>
<td>1.2</td>
<td>1.4</td>
<td>1.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Saline Co</th>
<th>0.9</th>
<th>1.1</th>
<th>0.7</th>
<th>0.8</th>
<th>0.8</th>
<th>0.9</th>
<th>0.9</th>
<th>0.9</th>
<th>0.5</th>
<th>0.8</th>
<th>0.8</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.7</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.9</td>
<td>0.6</td>
<td>1.1</td>
<td>0.6</td>
<td>0.8</td>
<td>0.7</td>
<td>0.9</td>
<td>0.9</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>0.6</td>
<td>0.5</td>
<td>0.6</td>
<td>0.8</td>
<td>0.5</td>
<td>0.7</td>
<td>0.6</td>
<td>0.8</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Jewell Co</th>
<th>0.3</th>
<th>0.3</th>
<th>0.3</th>
<th>0.3</th>
<th>0.3</th>
<th>0.3</th>
<th>0.4</th>
<th>0.4</th>
<th>0.4</th>
<th>0.5</th>
<th>0.5</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.5</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0.4</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Thomas Co</th>
<th>0.8</th>
<th>0.8</th>
<th>0.7</th>
<th>0.6</th>
<th>0.7</th>
<th>0.6</th>
<th>0.6</th>
<th>0.6</th>
<th>0.5</th>
<th>0.6</th>
<th>0.6</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.6</td>
<td>0.9</td>
<td>0.7</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.6</td>
<td>0.6</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>0.7</td>
<td>0.8</td>
<td>0.8</td>
<td>0.6</td>
<td>0.5</td>
<td>0.6</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Finney Co</th>
<th>0.5</th>
<th>0.4</th>
<th>0.5</th>
<th>0.4</th>
<th>0.4</th>
<th>0.5</th>
<th>0.3</th>
<th>0.2</th>
<th>0.2</th>
<th>0.3</th>
<th>0.3</th>
<th>0.3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
<td>0.6</td>
<td>0.3</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>0.3</td>
<td>0.6</td>
<td>0.7</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.5</td>
<td>0.8</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Zn (DTPA)
Field variability soil Zn

Distance (feet)

Zn (ppm)

Thomas Co, 2012
Field variability soil Zn

![Field variability soil Zn graph]

- Finney Co
- Thomas Co
- Jewell Co
- Saline Co
- Ellis Co

Zn (DTPA)
Field variability soil Mn

<table>
<thead>
<tr>
<th>Location</th>
<th>0 ft</th>
<th>360 ft</th>
<th>1500 ft</th>
<th>3400 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ellis Co</td>
<td>30</td>
<td>29</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>32</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>28</td>
<td>33</td>
<td>30</td>
</tr>
<tr>
<td>Saline Co</td>
<td>42</td>
<td>53</td>
<td>46</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>47</td>
<td>48</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>48</td>
<td>43</td>
<td>45</td>
</tr>
<tr>
<td>Jewell Co</td>
<td>36</td>
<td>41</td>
<td>43</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>57</td>
<td>59</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>45</td>
<td>53</td>
<td>50</td>
</tr>
<tr>
<td>Thomas Co</td>
<td>70</td>
<td>75</td>
<td>75</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>66</td>
<td>85</td>
<td>73</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>78</td>
<td>76</td>
<td>63</td>
</tr>
<tr>
<td>Finney Co</td>
<td>46</td>
<td>52</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>52</td>
<td>46</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>46</td>
<td>44</td>
<td>52</td>
</tr>
</tbody>
</table>

Kansas State University
Field variability soil Mn

Distance (feet)

Mn (ppm)

Mn

Distance (feet)

Thomas Co, 2012
Summary

• Micronutrients seems to have no “starter effect” on corn biomass in addition to N and P.

• Response to starter w/ micros vary by soil type.
 – Location with sandy soil and low OM show significant response.

• Foliar application show no yield response in our study.
Summary

- Micronutrients with starter fertilizers may help with small scale soil nutrient variation.
- Within-field soil test variability for micronutrients should be considered.
- Starter with micronutrients may be an effective “insurance” to avoid potential yield loss in some conditions.
Acknowledgement

• Fluid Fertilizer Foundation
• Kansas Corn Commission
• AGVISE Laboratories
• Servi-Tech Laboratories
• Nutra-Flo
• Waters Agricultural Laboratories
• Olsen's Agricultural Laboratory
Questions?
Field variability soil Mn