Why Fluids?

Dale Leikam
What Are The Top 10 Advantages Of Fluid Fertilizers?

There Are So Many!

Some Benefit Everyone

For others, the relative advantage depends on the specific situation involved.

vs.
What Are Your Top Benefits?

1. **Fertilizer Placement**
 - a) Starter Applications
 - b) Subsurface Band (knife)
 - c) Surface Band (dribble)

2. **Homogeneous Blends/Droplets**

3. **Split Applications**

4. **Foliar Applications**

5. **Nutrient Use Efficiency**

6. **Uniform Applications (including micronutrients)**

7. **Handling Convenience**

8. **Combining With Weed Control**

9. **Fertigation**

10. **Environmental Benefits**

11. **Precision Ag/Variable Rate Prescription Application**

12. **Etc., Etc., Etc.**
Why Fluids?

5. Logistics

• Handling Convenience
• Product Safety
• Equipment Requirements
• Logistics Of Storage & Application
Logistics: Equipment and Safety

- **Handling Convenience & Cost**
 - Much easier and cost effective to equip for handling & applying fluid fertilizers (University researchers!)

- **Product Safety**
 - Desiccant properties & high pressure for ammonia

- **Numerous Fluid Equipment Options**
 - Many equipment options for fluid vs. dry

- **Transfer/Storage/Application Logistics**
 - Pumping vs. auger/belt transfer
 - Nurse tanks & plant storage requirements
 - Hose inspection/replacement
 - Caking, ‘fines’ development during handling
Why Fluids?

4. Precision - Right Rate

• Application Uniformity & Accuracy
• Homogeneous, No Segregation, Continuous Bands
• Calibration
• Variable Prescription Applications
Precision: No Segregation

Once blended, solid fertilizers immediately begin the process of unblending

- **Coning** - Occurs as blended materials are dropped, forming a conical pile in storage and application equipment
 - Larger particles tend to roll to the edge of the pile
 - Smaller particles tend to accumulate in the center
Precision: No Segregation

Once blended, solid fertilizers immediately begin the process of unblending!

- Vibration - Vibration segregation occurs as the tendering equipment and applicator travel to or across the field
Precision: No Segregation

Once blended, solid fertilizers immediately begin the process of unblending!

- **Ballistic** - Ballistic segregation occurs during application since larger particles weigh more and travel farther than smaller particles.

Doubling particle size increases weight by 8 times!!
Once blended, solid fertilizers immediately begin the process of **unblending**!

Particle size is also the dominant characteristic affecting swath uniformity as well.
“Mixing of 10-34-0 with UAN may improve P-use efficiency both through improved P distribution and through ammonium-N effects on P uptake and P fixation.”

Drs. Eghball and Sander
University of California

“…… we suggest that plant roots may follow a continuous band with only one root contact. However, with discontinuous bands, where fertilizer is placed in droplets or as dry particles too far apart to interact with each other, a new root contact may be needed for each droplet or particle.”
Right Rate: Distribution Uniformity

ALABAMA

Optimizing Nutrient Stewardship Using Broadcast Fertilizer Application Methods

By John Fulton, Timothy McDonald, C. Wesley Wood, Oladiran Fasina and Simerjeet Virk

Table 1. Mean physical characterization for the different fertilizer components and blended products.

<table>
<thead>
<tr>
<th>Product</th>
<th>Grade, %</th>
<th>d_{50}, mm</th>
<th>GSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonium Nitrate</td>
<td>34-0-0</td>
<td>2.16</td>
<td>25</td>
</tr>
<tr>
<td>DAP</td>
<td>18-46-0</td>
<td>3.22</td>
<td>17</td>
</tr>
<tr>
<td>Potash</td>
<td>0-0-60</td>
<td>3.05</td>
<td>29</td>
</tr>
<tr>
<td>Blend 1</td>
<td>17-17-17</td>
<td>2.87</td>
<td>32</td>
</tr>
</tbody>
</table>

Figure 1. Example nutrient concentration across the spread width for Blend 1 (17-17-17) with a spreader setup at a 70 ft spread width. Reported data are the mean of three pan tests.

Visual Illustration of the resulting distribution from an individual pan test using Blend 1 (17-17-17). Note that the DAP particles (larger in diameter) were applied further out than the KCl (pink particles) and ammonium nitrate (white particles). While not clearly visible, the center three tubes contain the highest percentage of dust particles, which were mainly ammonium nitrate.
Right Rate: Variable Prescription Applications
Why Fluids?

3. Flexibility
 • Versatility
 • Adaptability
3. Flexibility

- **Adaptability**
 - Respond to changing environment (e.g. weather)
 - Easily adjust to changing conditions (e.g. reduced-till)
 - Suitable for many and varied situations

- **Versatility**
 - A wide variety of best-fit functions/competencies
 - Ability to do many things very well
 - Ability to adjust/adapt to varied situations
Adaptable - Uniquely suited to changing soil/environmental conditions

Adaptable - Provides flexibility for simultaneous precision operations & applications

- Tillage and planting equipment
- Irrigation/fertigation
- Other crop nutrients & micronutrients
- Many pesticides
- Fertilizer additives
Versatility

Versatile - Only nutrient sources adaptable to **ALL** methods & placements

- Broadcast
- Subsurface, surface, dribble and starter banding
- Drip, sprinkler and flood irrigation
- Only option for in-season foliar application

Versatile - Fits conventional, conservation, reduced, no-till systems and long-term permanent crops

Versatile - Ideally suited for pre-plant, planting time and in-season application
Foliar fertilization is a viable means of applying certain fertilizers that can supplement traditional soil methods. It can be used to improve the efficiency of a nutrient urgently required by the plant to produce maximum growth, yield, and fiber quality. In this way, foliar fertilization supplements soil applications for a more efficient supply of nutrients to the developing cotton plant for optimum yields and fiber quality. In general, foliar applications should be made early morning or late evening for maximum efficiency, and no foliar applications should be made to water-stressed plants.”
Versatility & Adaptability

by Dr. Raun Lohry
Liquid Starter Makes Conservation-till Work
Research shows liquid starters continue to excel under intensive management

Dr. Gary Gascho
Late-Season Foliar Sprays Boost Soybean Yields
Yield increases as high as 9 bu/A achieved in Georgia experiments.

Paul S. Belzer
Point Injection: Viable Option for Growers
Studies show improved field responses, minimal soil disturbance, reduced energy costs and increased fertilizer efficiency.
Seven-year average corn grain yields were lowest with fall N without N-Serve, intermediate and equal for fall N + N-Serve and spring preplant N, and highest for split N treatment......

Apparent N recovery and economic return in decreasing order: split N > Spring > Fall + N-Serve > Fall N.

These results clearly show yield, profitability and N efficiency advantages for the split N treatment.”
Trickle irrigation in combination with feedback from in-season nitrogen (N) tissue tests offers almost unlimited flexibility in developing site-specific nutrient management plans.

Tom A. Doerge & T. L. Thompson
University of Arizona
Why Fluids?

2. Agronomics

- Uniquely Suited To 4R Stewardship
- Nutrient Use Efficiency
- Soil Chemistry
Agronomics: Efficiency

Drs. J. L. Havlin, A. J. Schlegel and G. M. Pierzynski

Improved yields improve environment
Tests made on grain sorghum and winter wheat to determine optimum recovery and minimize N leaching.

Table 2. Fertilizer management effect on ANR and soil N content after harvest.

<table>
<thead>
<tr>
<th>Rate (lbs/A) N</th>
<th>Placement Method</th>
<th>Grain Sorghum</th>
<th>Winter Wheat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N P₂O₅</td>
<td>ANR* %</td>
<td>Soil N* lbs/A</td>
</tr>
<tr>
<td>0 0</td>
<td>-</td>
<td>41</td>
<td>25</td>
</tr>
<tr>
<td>40 0</td>
<td>Broadcast</td>
<td>22</td>
<td>70</td>
</tr>
<tr>
<td>40 20</td>
<td></td>
<td>36</td>
<td>59</td>
</tr>
<tr>
<td>40 40</td>
<td></td>
<td>42</td>
<td>52</td>
</tr>
<tr>
<td>80 0</td>
<td></td>
<td>30</td>
<td>66</td>
</tr>
<tr>
<td>80 20</td>
<td></td>
<td>34</td>
<td>64</td>
</tr>
<tr>
<td>80 40</td>
<td></td>
<td>35</td>
<td>65</td>
</tr>
<tr>
<td>40 0</td>
<td>Knife</td>
<td>37</td>
<td>61</td>
</tr>
<tr>
<td>40 20</td>
<td></td>
<td>52</td>
<td>50</td>
</tr>
<tr>
<td>40 40</td>
<td></td>
<td>53</td>
<td>48</td>
</tr>
<tr>
<td>80 0</td>
<td></td>
<td>31</td>
<td>76</td>
</tr>
<tr>
<td>80 20</td>
<td></td>
<td>36</td>
<td>58</td>
</tr>
<tr>
<td>80 40</td>
<td></td>
<td>38</td>
<td>57</td>
</tr>
<tr>
<td>40 0</td>
<td>Dribble</td>
<td>35</td>
<td>64</td>
</tr>
<tr>
<td>40 20</td>
<td></td>
<td>51</td>
<td>48</td>
</tr>
<tr>
<td>40 40</td>
<td></td>
<td>51</td>
<td>50</td>
</tr>
<tr>
<td>80 0</td>
<td></td>
<td>29</td>
<td>79</td>
</tr>
<tr>
<td>80 20</td>
<td></td>
<td>34</td>
<td>55</td>
</tr>
<tr>
<td>80 40</td>
<td></td>
<td>37</td>
<td>51</td>
</tr>
</tbody>
</table>

*ANR = apparent N recovery; Soil N = inorganic N content, 0 to 4-foot depth
"The most spectacular response from any plant food applied with starter is the tremendous increase in fertilizer efficiency gained by banding zinc in starter. In Nebraska tests, one-tenth of a pound of zinc increased yields by 37 bushels per acre! Researchers said, "With placement below and to the side of the seed only small amounts of zinc were needed to produce maximum yields."

FJ Spring 1993 & FJ 1994 Fall
Fields had been in no-till for at least two years. Nitrogen fertilizer was applied at the rate of 120 lbs/A on May 12 when corn plants were one to two inches tall. Soil surface covered with crop residue when treatments were applied ranged from 60 to 80 percent.

“Agronomics: Efficiency

Dr. Richard H. Fox and William P. Piekielek

Fluids Shine in Ammonia Volatilization Comparisons

Tests in no-till corn fields in central Pennsylvania compare UAN with urea.

Figure 2. Total ammonia loss over 16-day period using different sources/methods, eliminating two outlier plots, Fox and Piekielek, Penn State, 1993.

Figure 3. Corn Yields at early dent stage as function of N fertilizer source and method of application, Fox and Piekielek, Penn State, 1993.
Agronomy: Soil Chemistry

"Shoot dry weight increased 27 percent by adding 9 lbs/A of fluid N, versus no response to granular application. Similarly, the application of 9 lbs/A of fluid N increased P uptake in shoots by 29 percent, Mn uptake by 31 percent, and N uptake by 30 percent. No differences were recorded with granular applications."

Figure 4. Effect of fertilizer source and application of Zn on grain yield of Frame wheat, Emerald Rise, 2000.
Micronutrient Availability Improved With Fluids

“The results support our conclusion in the 2005 issue of the Fluid Forum Proceedings, which shows that the best practice for cereal production on the highly calcareous soils of South Australia should involve the use of NP fluid fertilizers containing micronutrients—principally Zn, Mn, and Cu, although Cu was not used in these experiments.”

Fluid Journal 2006
“Right source at the right rate, right time, and right place”
Agronomics: 4R Stewardship

When You Hear ‘The Right Rate’ . . .
Think Fluid Fertilizers

When You Hear ‘The Right Placement’ . . .
Think Fluid Fertilizers!

When You Hear ‘The Right Time’ . . .
Think Fluid Fertilizers!

‘The Right Source’ Is Obvious

..... Fluid Fertilizers
Agronomics: 4R Right Rate

Precision - Right Rate

- Application Uniformity & Accuracy
- Homogeneous, No Segregation, Continuous Bands
- Calibration
- Variable Prescription Applications

Uniform Distribution Of Nutrients With Fluid Fertilizers Is Unmatched

- Uniform across the field
- Uniform across application swath
- Uniform within a continuous band
Agronomics: Precise Placement

Precise Placement
Dual Band N-P

Effect Of NP Application Method On Wheat Yield

<table>
<thead>
<tr>
<th>Application Method</th>
<th>Harper</th>
<th>Dickinson</th>
<th>Osage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(bu/a)</td>
<td>(bu/a)</td>
<td>(bu/a)</td>
</tr>
<tr>
<td>Knife Knife</td>
<td>47.9</td>
<td>64.0</td>
<td>62.90</td>
</tr>
<tr>
<td>Knife B'cast</td>
<td>44.8</td>
<td>52.9</td>
<td>56.40</td>
</tr>
<tr>
<td>B'cast Knife</td>
<td>46.8</td>
<td>56.4</td>
<td>59.10</td>
</tr>
<tr>
<td>B'cast B'cast</td>
<td>44.8</td>
<td>53.4</td>
<td>52.90</td>
</tr>
</tbody>
</table>

LSD (0.05)
NS
6.8
NS

No P Check Yield
43.8
47.3
57.10

Kansas
“Using an intermediate degree of mixing, accomplished via strip treatments, has proven the more efficient placement. Fertilizer reaches a greater proportion of the root system and is not tied up as much by the soil as occurs with broadcast applications. The use of strip treatments, versus the extremes of banding and broadcasting, is definitely worth considering in the pursuit of getting greater yield responses from applied fluids.”

Dr. Stan Barber
Data from these trials clearly indicate that relatively high rates of N are needed in starter band fertilizers, and that P applications can be determined by soil testing. Our recommendations for corn are to apply 50 lbs/A of N in a 2 x 2 starter band in conjunction with needed P up to a rate of 50 lbs/A of P2O5 in the starter band. This rate of P covers the vast majority of soils used for corn production in the mid-Atlantic region.
“Grower interest in use of banded fluid fertilizer at planting is increasing. This renewed interest is due, in part, to frequent observations that banded fertilizer increases crop growth and subsequent yield. there are now several inexpensive attachments that can be added to planters to place fertilizer in a band near the seed at the time of planting.”
Results from a two-year study at four irrigated sites in Kansas show that late-season application of N to soybeans at the R3 growth stage will increase soybean yields.

T.L. Wesley, Drs. R.E. Lamond, V.L. Martin, S.R. Duncan

Applied N At R3 Stage Bumps Soybean Yields

Nitrogen applications at R3 growth stage produce 11.8 percent average yield increase in two-year Kansas study.

“Results from a two-year study at four irrigated sites in Kansas show that late-season application of N to soybeans at the R3 growth stage will increase soybean yields.”
1. Value

- Agronomics, Flexibility, Precision and Logistics
- Profitability & Stewardship
1. Fertilizer Placement
2. Homogeneous Blends/Droplets
3. Split Applications
4. Foliar Applications
5. Nutrient Use Efficiency
6. Uniform Applications (including micronutrients)
7. Handling Convenience
8. Combining With Weed Control
9. Fertigation
10. Environmental Benefits
11. Precision Ag/Variable Rate Prescription Application
1. **Value**
 - Performance, Profitability & Stewardship

2. **Agronomics**
 - Uniquely Suited To 4R Stewardship
 - Nutrient Use Efficiency
 - Soil Chemistry

3. **Flexibility**
 - Adaptability
 - Versatility

4. **Precision - Right Rate**
 - Application Uniformity & Accuracy
 - Homogeneous, No Segregation, Continuous Bands
 - Calibration
 - Variable Prescription Applications

5. **Logistics**
 - Special equipment not required
 - Product transfer/storage logistics
 - Equipment complexity, versatility & cost
Why Fluids?

Dale Leikam

Dale.Leikam@cox.net

785-770-0009