Dealer Programs To Move Soybean Yields Higher

Missy Bauer
B&M Crop Consulting, Inc.
High-Yielding Soybeans

Understand the Yield Components of Soybeans
Soybean Yields

• Have we gotten “lazy” with soybean management?
• Plant.....spray.....harvest.
• How much time do you spend with your customers in soybean fields?
• Are your customers frustrated with soybean yields?
• Do you understand the factors that drive soybean yield?
• What have you tried to improve with their soybean management system?
Where do we begin?

• Understanding how the plant works
• Growth & Development
 – Germination/Emergence
 – Growing Point
 – Vegetative Stages
 – Reproductive Stages
 – Yield Components
Growth and Development

• Like corn, soybeans have a built-in yield potential and once planted start adjusting to the environment

• Beans set their yield later in the development process than corn. A tough start for beans doesn't carry the yield penalty it does in corn
Growth and Development

• The staging system for beans is split into Vegetative Stages and Reproductive Stages
• Vegetative Stages are designated by V (V1, V2, etc.)
• Reproductive stages are designated by R (R1-R8)
Growth and Development

• Nitrogen nodules show up at VE but don’t start supplying nitrogen to the plant until V3
• Nodules that are making nitrogen will be pink inside
• Nodules will produce whatever nitrogen the soil can’t supply to meet bean needs
Soybean Seed Treatment

Inoculant

Treated
More Nodules

Untreated
Less Nodules

Gibsonburg, OH. Photos taken on 6/8/06, V2 Soybeans
Growth and Development

• Yield is divided into three components
 – Total number of pods
 – Number of beans per pod
 – Weight per bean (seed size)
Growth and Development

• Branch is a function of environment and genetics
 – The main growing point on top controls the auxiliary buds on the stem below
 – If the main growing point has a lot of control over the plant, you will have a straight line bean
 – If it has weak control, you will have a bushy bean
Effect of Stand Density on Pod Number

Number of pods per plant

Stand Density

William J. Weibold, Ph.D.
Professor, Plant Science Division, University of Missouri
Source: William J. Weibold, Ph.D., Professor, Plant Science Division, University of Missouri
Plant Growth Regulators (PGRs)

• PGRs are plant hormones that use chemical signal molecules to regulate cellular processes within the plant

• PGRs:
 – Shape the plant
 – Affect seed growth
 – Determine time of flowering
 – Determine the sex of flowers
 – Affect leaf death
 – Affect fruit characteristics
 – Affect which tissues grow where
 – Affect plant longevity
Flowering

- **60 to 75%** of all soybean flowers produced typically abort and never contribute to yield.
- The over-production of flowers allows the soybean to compensate for stressful conditions during the early R-stages.
Growth and Development

• Yield is divided into three components
 – Total number of pods
 – Number of beans per pod
 – Weight per bean (seed size)

• Large yield increases are the result of increased pods per plant
 – Upper limit on beans per pod and seed size are genetically set
 • Together they can make a sizable difference
Flower and Pod Abscission within a Soybean Canopy

Source: William J. Weibold, Ph.D., Professor, Plant Science Division, University of Missouri
Planting Date

- Average yield loss of 0.4 Bu/ac/day
- When planting has been delayed past the first week of May
- Univ. Wisconsin
Growth and Development

• **Stress** in the form of moisture, heat, etc. during R1 through R5.5 will affect the components of yield differently
 – Stress at R1 through R4 could **reduce the number of pods**
 – Stress at R3 through R4 could **reduce the size of pods** (1, 2 or 3 bean pods)
 – Stress at R4 to R6 may cause **beans to abort in the pod**
 – Stress at R5.5 to R6.5 will cause the **bean size to be affected**
Stress increases amount of abscission.

“Older” pods produce hormones or steal food/nutrients from “younger” pods.
All nodes produce flowers, why is yield centered in the middle to upper canopy?
R5 Stage (Beginning Seed)

Pod and Seed Development during R5
Seed Size

Fungicide

Control

Aborted Seeds
Irrigation Termination

Normal (R6) Late (R7)
Effect of late irrigation

<table>
<thead>
<tr>
<th>IV's</th>
<th>Yield (bu/A)</th>
<th>Normal</th>
<th>Late</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigation termination</td>
<td>68</td>
<td>70</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>74</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>74</td>
<td>76</td>
<td>84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V's</th>
<th>Yield (bu/A)</th>
<th>Normal</th>
<th>Late</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigation termination</td>
<td>58</td>
<td>62</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>64</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>66</td>
<td>74</td>
</tr>
</tbody>
</table>

Trey Koger, Ph.D.
Soybean Extension Specialist, Mississippi State University Extension
The timing of stress has a major impact on yield.

Reduces

flowers

Reduces

beans per pod

and

bean size

Reduces

nodes &

pods per node

Changes bean quality = more protein, less oil

Source: DiFonzo, Michigan State University, 2003
Yield Components

<table>
<thead>
<tr>
<th>Year</th>
<th>Pods</th>
<th>Seeds</th>
<th>Potential Seeds</th>
<th>Seeds/lb.</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>28</td>
<td>60</td>
<td>68</td>
<td>2588</td>
<td>55</td>
</tr>
<tr>
<td>2008</td>
<td>15</td>
<td>37</td>
<td>42</td>
<td>3738</td>
<td>25</td>
</tr>
<tr>
<td>2009</td>
<td>30</td>
<td>58</td>
<td>74</td>
<td>3214</td>
<td>39</td>
</tr>
</tbody>
</table>

Population

<table>
<thead>
<tr>
<th>Population</th>
<th>Seeds/Plant</th>
<th>Seeds/lb.</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>150,000</td>
<td>60</td>
<td>2500</td>
<td>60</td>
</tr>
<tr>
<td>150,000</td>
<td>60</td>
<td>3200</td>
<td>47</td>
</tr>
</tbody>
</table>
Summary

• Understanding growth and development is a key to fine tuning a “system”

• Understanding the effects of stress based on the growth stage of a plant is important in optimizing yields

• “Back to the Basics!”
 – Do you know how to identify the growth stages of soybeans?
Questions?

Thank you