FLUID NITROGEN/SULFUR FORMULATIONS TO MITIGATE SULFUR DEFICIENCIES AND MAXIMIZE COTTON YIELDS IN THE UPPER SOUTHEAST COASTAL PLAIN

William “Hunter” Frame
Field Crops Agronomist/ Assistant Professor
Virginia Tech
Tidewater Agricultural Research and Extension Center
Suffolk, VA

February 21, 2017
2017 Fluid Fertilizer Forum
Scottsdale, AZ
Sulfur is an essential plant nutrient, though required in smaller quantities than N, P and K.
- Used to create proteins which regulated photosynthesis and N metabolism.

Sulfur is mobile in soil systems and is taken up by plants as sulfate, SO_4^{2-}, thus making it prone to leaching like nitrate (NO_3^-).

Sulfur in immobile in plants, therefore remobilization of S will not occur and deficiencies will be observed in the upper portion of the canopy.

The Clean Air Act has resulted in cleaner air with lower S deposition and more common S deficiencies occurring in cotton.
WET SULFATE DEPOSITION

1989

2013
1519 lbs of lint per acre

1863 lbs of lint per acre
OBJECTIVES

• Evaluate granular and fluid N sources with varying S application rates on in-season NDVI measurements, petiole and leaf S status during the first week of bloom, and lint yield of cotton in the upper southeast coastal plain.

• Determine the effect of high N:S ratios in side-dress fluid N sources at varying N application rates on NDVI, petiole and leaf N:S ratios, and lint yield in the upper southeast coastal plain.
MATERIALS AND METHODS

• Three locations during 2016
• Randomized complete block design with 17 treatments and 4 replications
• Compared granular and fluid side-dress sources
 • Urea + ammonium sulfate (AMS)
 • UAN32 + ammonium thiosulfate (12-0-0-26S)
 • 24-0-0-3S
 • 24-0-0-6S
 • 24-0-0-9S
• NDVI measured from a week after fertilizer application for five weeks (data not shown)
• Petiole and leaf tissue samples were collected from each plot during the first week of bloom
• Yield was measured from the center two rows of the four row plot
• PROC GLIMMIX was used for ANOVA with an alpha = 0.05.
 • Treatment design was
 • 2 S Sources x 4 S rates
 • 4 Fluid Formulations x 3 N rates
<table>
<thead>
<tr>
<th>Trt</th>
<th>N-S Formulations</th>
<th>Total N</th>
<th>Side-dress N</th>
<th>Sulfur</th>
<th>Total N:S</th>
<th>Fluid Fertilizer N:S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>---------</td>
<td>--------------</td>
<td>--------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>1</td>
<td>No Applied N or S Control</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2+</td>
<td>Urea</td>
<td>100</td>
<td>80</td>
<td>0</td>
<td>100:0</td>
<td>-</td>
</tr>
<tr>
<td>3+</td>
<td>Urea + AMS†</td>
<td>100</td>
<td>80</td>
<td>10</td>
<td>10:1</td>
<td>-</td>
</tr>
<tr>
<td>4+</td>
<td>Urea + AMS</td>
<td>100</td>
<td>80</td>
<td>20</td>
<td>5:1</td>
<td>-</td>
</tr>
<tr>
<td>5+</td>
<td>Urea + AMS</td>
<td>100</td>
<td>80</td>
<td>30</td>
<td>3:1</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>32-0-0</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>60:0</td>
<td>32:0</td>
</tr>
<tr>
<td>7+</td>
<td>32-0-0</td>
<td>100</td>
<td>80</td>
<td>0</td>
<td>100:0</td>
<td>32:0</td>
</tr>
<tr>
<td>8</td>
<td>32-0-0</td>
<td>140</td>
<td>120</td>
<td>0</td>
<td>140:0</td>
<td>32:0</td>
</tr>
<tr>
<td>9</td>
<td>24-0-0-3S</td>
<td>60</td>
<td>40</td>
<td>5</td>
<td>12:1</td>
<td>8:1</td>
</tr>
<tr>
<td>10+</td>
<td>24-0-0-3S</td>
<td>100</td>
<td>80</td>
<td>10</td>
<td>10:1</td>
<td>8:1</td>
</tr>
<tr>
<td>11</td>
<td>24-0-0-3S</td>
<td>140</td>
<td>120</td>
<td>15</td>
<td>9:33:1</td>
<td>8:1</td>
</tr>
<tr>
<td>12</td>
<td>24-0-0-6S</td>
<td>60</td>
<td>40</td>
<td>10</td>
<td>6:1</td>
<td>4:1</td>
</tr>
<tr>
<td>13+</td>
<td>24-0-0-6S</td>
<td>100</td>
<td>80</td>
<td>20</td>
<td>5:1</td>
<td>4:1</td>
</tr>
<tr>
<td>14</td>
<td>24-0-0-6S</td>
<td>140</td>
<td>120</td>
<td>30</td>
<td>4.67:1</td>
<td>4:1</td>
</tr>
<tr>
<td>15</td>
<td>24-0-0-9S</td>
<td>60</td>
<td>40</td>
<td>15</td>
<td>4:1</td>
<td>2.66:1</td>
</tr>
<tr>
<td>16+</td>
<td>24-0-0-9S</td>
<td>100</td>
<td>80</td>
<td>30</td>
<td>3:1</td>
<td>2.66:1</td>
</tr>
<tr>
<td>17</td>
<td>24-0-0-9S</td>
<td>140</td>
<td>120</td>
<td>45</td>
<td>3.11:1</td>
<td>2.66:1</td>
</tr>
</tbody>
</table>

†AMS = granular ammonium sulfate (21-0-0-24S)
‡ Treatments to be compared to evaluate sulfur application rates and granular vs fluid N-S sources.
PLANTING AND TREATMENT APPLICATION DATES

<table>
<thead>
<tr>
<th>Location</th>
<th>Planting Date</th>
<th>Side-dress</th>
<th>N/S Application Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southampton, VA (SHC)</td>
<td>5/10/2016</td>
<td></td>
<td>7/5/2016</td>
</tr>
<tr>
<td>Lewiston, NC (LEW)</td>
<td>5/19/2016</td>
<td></td>
<td>7/7/2016</td>
</tr>
</tbody>
</table>
PRE-PLANT SOIL AMMONIUM AND NITRATE-N

<table>
<thead>
<tr>
<th>Sampling Depth</th>
<th>TAREC</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>in.</td>
<td>NH$_4^+$-N</td>
<td>NO$_3^-$-N</td>
<td>NH$_4^+$-N</td>
<td>NO$_3^-$-N</td>
</tr>
<tr>
<td>Total</td>
<td>8.63</td>
<td>6.93</td>
<td>8.50</td>
<td>5.63</td>
</tr>
<tr>
<td>0-6</td>
<td>2.03</td>
<td>2.55</td>
<td>1.15</td>
<td>1.81</td>
</tr>
<tr>
<td>6-12</td>
<td>1.85</td>
<td>0.99</td>
<td>0.96</td>
<td>1.59</td>
</tr>
<tr>
<td>12-24</td>
<td>2.11</td>
<td>1.14</td>
<td>1.08</td>
<td>1.16</td>
</tr>
<tr>
<td>24-36</td>
<td>2.65</td>
<td>2.25</td>
<td>5.31</td>
<td>1.08</td>
</tr>
</tbody>
</table>
RESULTS

GRANULAR N/S FORMULATIONS
VERSUS
FLUID N/S FORMULATIONS
PETIOLE S CONCENTRATION AND FERTILIZER SOURCE

- Suffolk
- SHC
- LEW

Petiole Sulfur (ppm)

- Urea + AMS
- UAN32 + ATS
PETIOLE SULFUR DURING 1ST WEEK OF BLOOM

![Graph showing the relationship between Sulfur Application Rate and Petiole Sulfur concentration for various locations.]

- Suffolk, VA
- Southampton, VA
- Lewiston, NC

Sulfur Application Rate (lb. S ac⁻¹) vs. Petiole Sulfur (ppm)
PETIOLE SULFUR AND LEAF SULFUR CONTENT

Lint Yield = 0.32 + 3.4e^{-4} \times \text{SRate} - 1.14e^{-7} \times (\text{SRate})^2

R^2 = 0.42
FERTILIZER SOURCE AND PETIOLE NITRATE-N AT 100 LB N ACRE$^{-1}$

![Bar chart showing comparisons between different fertilizer sources and petiole nitrate-N levels for Suffolk, SHC, and LEW regions.](chart.png)
PETIOLE NITRATE-N AND SULFUR RATE DURING THE 1ST WEEK OF BLOOM

![Graph showing petiole nitrate-N levels for Suffolk, SHC, and Lew plots with different sulfur rates and their corresponding letters indicating significant differences.](image-url)
Lint Yield and N/S Source
Suffolk, VA

Lint Yield = 1115 + 14\cdot SRate - 0.39\cdot (Srate)^2
R^2 = 0.99

Lint Yield = 1208 + 5.66\cdot SRate - 0.11\cdot (Srate)^2
R^2 = 0.99

Sulfur application rate (lb. S ac\(^{-1}\))
LINT YIELD AND N/S SOURCE

Southampton, VA
Lewiston, NC

![Graph showing lint yield and Sulfur Application Rate for Southampton, VA and Lewiston, NC.](image-url)
RESULTS

FLUID N/S FORMULATIONS AND VARYING NITROGEN RATES
PETIOLE NITRATE-N AND NITROGEN RATE

The chart illustrates the petiole nitrate-N levels for three different locations: Suffolk, SHC, and LEW. The nitrogen rates are represented as 60 lb. N ac⁻¹, 100 lb. N ac⁻¹, and 140 lb. N ac⁻¹. The graph shows significant variation in nitrate-N levels across the different nitrogen rates and locations.
PETIOLE SULFUR FOR FLUID N/S FORMULATIONS

- Suffolk
- SHC
- LEW

Comparison of Petiole Sulfur (ppm) across different formulations:

- 32-0-0
- 24-0-0-3S
- 24-0-0-6S
- 24-0-0-9S

Bar chart showing the sulfur levels with letters indicating statistical comparisons.
FLUID N/S FORMULATIONS AND LINT YIELD

Graphs showing the lint yield in pounds per acre (lb. ac\(^{-1}\)) for different formulations and nitrogen rates. The graphs compare Suffolk, SHC, and LEW varieties with treatments labeled A and B, indicating statistical significance. The nitrogen rates include 60 lb. N ac\(^{-1}\), 100 lb. N ac\(^{-1}\), and 140 lb. N ac\(^{-1}\).
WEATHER DATA FOR LOCATION

TAREC

SHC
WEATHER DATA FOR LOCATION

TAREC

Lewiston

Max. Daily Temperature
Min. Daily Temperature
Daily Precipitation (Season Total = 32.2 inches)
Cumulative DD60 (Season Total = 2,453 DD60)