Summary: Why is all this important to agricultural sustainability? Quality of food in feeding the world is critical to human survival. This involves vitamin, microelement and protein. Water and nutrient efficiency involve crop performance. Water, nutrient efficiency, pharmaceutical work and plastics are equally important to a growing world population.

We'll begin with a brief look at history. We go way back to the Romans and Greeks who brought Pb, S, Hg, and Fe into the world of agriculture. By 1,000 AD, seaweeds appeared in Ireland. N, P, K (manures) appeared on the scene in the 1800s in Rothamsted, England. In late 1800’s Anton de Bary, symbiosis; Carlsberg labs and yeasts in Denmark; and Burgunday/Bordeaux mixes (Cu, S, N, and Ca) in France. In 1909, Haber-Bosch. In the late 50’s, green manures via Rothamsted. Moving on to 1937 we see Florida citrus/nitrates and urea (biuret) in Agriform, California. By the late 50’s, we see the first evaluation of absorption T50 times of multiple nutrients and crops at Michigan State University. Urea grain protein began appearing in the plains. Bugs and extracts were part of the Trichoderma spp by the 1970’s. NPK grains, potatoes, beets, and canola began to appear in the United Kingdom in the 1980’s, as did soil microbes (B) and extracts, stimulants, crop protection, P solubilization, humic/fulvic acids, hormones and novel compounds.

Truism. Plants can't run away so they need to be smart enough to survive in SITU.

Genetics ahead:
- Drought tolerance
- Nutritional Constitution
- Taste
- Quality
- Nutrient use efficiency
- Non-conventional use e.g. B/N
- Zn/Ca, Ni/Zn, SAR, nutrient solubilization, phylloplane/sphere, rhizoplane/sphere, rhizoplane/sphere (exudates).

Nutrition:
- Malnutrition now accounts for 45 percent of all deaths of children under 5 worldwide: 2.6 million children lost Medecins Sans Frontiers
- 30% of world population deficient in iron
- anemia, hearing loss (Penn State)
- in UK, post-operative patients given Guinness

Agronomy. Many definitions. For us, let us stay with positive economics of favorable gene expression mediated by our advice and inputs:
- Disruptive technologies and strategy for innovation: be very careful and selective
- Creating ROI at every level from dinner plate.

Physiology is the science of the function of living systems.
- Whole crop
- Plant
- Organ
- Leaf
- Root
- Fruti/Tuber
- Seed
- Cellular
- Organelle—chloroplast, mitochondria
- Bio-molecules (execute chemical or physical functional in living system)

Physiological tools. We are no longer curing deficiencies, at worst we preempt or override (transient deficiencies). The products and solutions we offer are best considered as physiological tools to assist maximal gene expression.

- Genetics
 - Genome
 - Genes
 - Genotype

GMO vs CRISP-CAS9—NOW-CPF1
 - Genetic Scissors
 - Prometheus/Ethic

Role of CL, CA, ZN and B in Mineral Nutrition of Row Crops—A Physiological Overview

- CONSTITUTIVE (sometimes referred to as structural):
 - Cell wall membrane integrity
 - Disease and pest resistance
 - Storage quality
 - Protein Structure (enzyme and co-enzyme)

- CHEMICAL
 - Metabolic Processes
 - Regulation
 - Messengers
 - Hormone, Protein and carbohydrate synthesis

- Functional constitutive/chemical cross-overs between Zn, Ca, and B

- Product Rationale

Physiological Tools

- Genetics
 - Genome
 - Genes
 - Genotype
 - Phenotype (that would be us)

GMO vs Crispr-CAS9—NOW—CPF1
 - Genetic scissors
 - Promethesus/ethics

Physiological and Biological Targets

- Food: fruit, seed, stem, roots, leaves
- Fiber: flower/seed, stems, tubers
- Fuel: seed, stalks, leaves
- Fun: leaves and flowers

Target Manipulation:

- Seed: Abundance, germ efficiency, seed mass, oil/protein content, storage
- Leaf: Longevity, mineral content and sink available, strength, respiration photosynthetic area and duration
- Whole plant: Plant growth rate, architecture (height, phyllotaxis etc.) fiber and sugar content, source/sink relationships

Figure 1 Provides a Stage by Stage Look at the Plant Hormone Cycles.

Defining Physiology. Physiology is the science of the function of living systems.

- Whole crop
- Plant
- Organ: leaf, root, fruit-tuber, seed
- Cellular

Figure 2. Leaf Shape — standard cotton vs. okra cotton

Figure 3: Root tip cells—generalists to specialists

Figure 4: Photosynthetic advances

Photo crystals (Figure 3) reflect blue wavelengths but absorb red and green in low light (begonias, forest floor) slowing gap between incoming and reflected light, thus improving photosynthesis. Genes protect against high light intensity damage.
switch off to speed up photosynthesis after shade. Plants yield higher with fewer leaves (shade effect).

Soil Applications:
- Seed treatment/inoculation
- Starter
- Irrigation
- Drench

Limits with conventional inputs such as fungicides, insecticides.

Foliar Applications: Much maligned in “conventional” circles:
- Cure-all vs. agronomic proven supplement. Muck and mystery vs. proven solutions. Ignorance at “research” level is a hurdle

“Quality of food in feeding world is critical to human survival”

(disparate disciplines).
- Multiple ride opportunities?
 - Clyphosateherbicide.
 - Fungicide.
 - Corrective/compensatory/additive aspects.

Delivery Chemicals:
- Soil
 - Chelates, strong complexes
 - Soil and chemical compatibility
- Foliar
 - Weak complexes
 - Plant analogs
 - Adjuvants
 - Translaminar and translocation
 - Plant(non-phyto) and chemical compatibility

Figure 5 shows all the elements involved in Sugar Alcohols Lowe Weight Acids.

Crop Protection:
- Antagonism vs. “cidal”
- Resistance vs Tolerance

Generally speaking, a healthy plant/crop is more resistant to:
- Fungi(balance N, green manure)
- Insects
- Weeds
- Nematodes

Figure 3. Leaf Shape – Root tip cells – generalists to specialists

Figure 4. Photosynthetic advances
Dr. Julian Smith is a member of the Fluid Fertilizer Foundation Board of Directors and a managing editor on the Fluid Journal magazine’s Editorial Committee.