Developing Liquid Starters for Corn Production in the Midwest

Jeffrey Vetsch, Researcher 4 Univ. of MN Southern Research and Outreach Center

2022 Fluid Technology Workshop December 1, 2022, Davenport, Iowa

HOME > WHAT ARE THE 4RS

4RS

4R Principles

Benefits of Using the 4Rs

Implementation

Sustainability

RESOURCES

4R Pocket Guide

4Rs of Nutrient Stewardship

4R Farmers & The Lake

4R Micronutrient Webinars

https://nutrientstewardship.org/4rs/

What are the 4Rs

crop needs.

when crops needs them.

fertilizer type crop needs.

Keep nutrients where crops can use them.

Where do liquid starters fit in 4R management?

- Crops: corn, small grains, soybean, sugar beets
- Nutrients applied: N, P, K, S, Zn, other micros
 - Crop response can be affected by placement, nutrient and rate
- Tillage system: no-till, reduced till, strip-till (band method)
- Crop rotation: corn after corn or small grains vs soybean
- Soil characteristics: poorly drained, well drained, pH
- Broadcast P rates affect starter response to N, P & S
- Soil test P levels: low, medium/optimum or very high

Liquid starter fertilizer placement options

Liquid starter placement at Waseca (2004-06)

Fluid NPKS	3-Yr Avg.
Placement ^{1/}	Corn Yield
	bu/ac
Control	186
2×0	196
2×2	195
LSD (0.10) =	7

 $\frac{1/}{2}$ Averaged across 4 NPKS rates of application (Waseca, 2004-2006).

- Corn after soybean (2 yr) or corn silage (1 yr)
- High to very high Bray P1
- Surface dribble as good as stream injected behind coulter
- Yield response to NPKS
- N&P in pop-up also increased yield in this study (data not shown)
- Randall and Vetsch. 2006.
 Fluid Journal
- FFF funding

Liquid starter placement at Waseca (2007-09)

Starter	Treatme	ent		Grain	
Placement	APP	UAN	Yield	Moisture	•
	gal/A	lb N/A	bu/A	%	•
control	0	0	184	24.2	
In-furrow	5	0	190	24.1	
2 × 0	5	0	186	24.2	
"	5	15	192	23.8	
"	5	30	190	23.8	
"	5	45	187	23.5	
LSD (0.	10):		4	NS	

Corn after corn (3-yr)

- Very high Bray P1
- Surface dribble with extra N as good as popup
- N&P in pop-up also increased yield
- Randall and Vetsch.
 2010. Fluid Journal
- FFF funding

Liquid starter placement by nutrient (N-P-S-Zn)

Sta	arter Treatment		Grain	Corn after beans
Placement	Products	Rate	Yield	 8 of 9 sites very high Bray P1
			bu/ac	• DTPA Zn ranged 0.4–1.8 ppm
control	None	None	196	 2 of 9 + yield response to Zn
In-furrow	APP	5 gal	200	 1 of 9 – yield response to Zn
In-furrow	APP+Zn	5+¼ lb	199	 2 of 9 + yield response to APP
In-furrow	APP+Zn	5+½ lb	197	 3 of 9 + yield response to ADD ATS compared to ADD
Surf. Band	APP+ATS	5+2 gal	205	alone
Surf. Band	APP+ATS+Zn	5+2+¼	201	 5 of 9 + yield response to
9-site	average L	SD (0.10):	3	APP+ATS, compared to control
				Vetsch 2010 AFREC (MN) funding

In-furrow starter interactions with N source and management of no-till corn (Vetsch and Randall. 2000. Agron, J).

Corn yield as affected by N management in strip-till at Waseca.

	Time of app	olication, N sour	ce, inhibitors ar	nd N rate (lb/ac)	Yield	
	Fall AA	Preplant ⁺	Planting UAN	Sidedress UAN	(bu/A)	
	None	None	None	None	111	
	w/N-Serve				161	
	Without				161	
		AA			168	
		Urea w/NBPT			166	
		Urea w/NBPT	Dribble, 20		172	
				Coulter Inj.	166	
TITLA .			Dribble, 20	Coulter, 80	170	
-			Coulter, 20	Coulter, 80	170	
0 Z.			Dribble, 40	Coulter, 60	160	
AA STAN	-		Coulter, 40	Coulter, 60	163	
	1 in A		Broadcast, 40	Coulter, 60	174	
STAT N.	A LANT	🔣 † w/NBPT a	as Agrotain	LSD (0.10):	8	

© 2018-22 Regents of the University of Minnesota. All rights reserved.

Effects of liquid starter fertilizer on V6 continuous corn.

Starter Fertilizer Rate		Dry matter yield, V6				
	APP	UAN	UAN ATS		2012	2013
-		gal/acre				%
	0	0	0		100	100
	0	0	2		107	117
	0	0	4		131	117
	0	8	0		145	165
	0	8	2		184	175
	0	8	4		184	180
	4	0	0		144	161
	4	0	2		151	170
	4	0	4		153	167
	4	8	0		193	184
	4	8	2		187	187
	4	8	4		200	207

Funding provided by the Fluid Fertilizer Foundation

Effects of liquid starters on corn grain moisture and yield, plant height and height CV at Waseca (clay loam, poorly drained).

					_
	Grain	Grain	Plant	CV of	-
Effects of starters	H_2O	Yield	height	height	
	%	bu/A	inch	%	-
APP (10-34-0) in-furrow					
None	17.8 a	209 a	31.4 b	7.9 a	
4 gal/A	17.3 b	210 a	34.0 a	6.8 b	
UAN (28-0-0) surface dribb	ole band				
None	17.7 a	209 a	31.3 b	8.3 a	
8 gal/A	17.3 a	210 a	34.1 a	6.4 b	
ATS (12-0-0-26) surface dr	ibble ba	nd			
None	17.8 a	207 b	31.9 c	7.4 a	
2 gal/A	17.4 a	211 a	32.7 b	7.6 a	
4 gal/A	17.4 a	211 a	33.6 a	7.0 a	

APP in-furrow

- did not affect grain yield (very high STP sites, not high pH).
- reduced grain moisture in 3 of 4 yr and for the 4–yr avg.
- UAN as a surface band
 - reduced grain moisture in 2 of 4 yr.
 - reduced CV of plant height (4-yr avg)
- ATS in a surface band
 - reduced grain moisture in 2 of 4 yr
 - increased grain yield in 1 of 4 yr (4 bu/A avg. across yr)

Effects of liquid starters on corn grain moisture and yield, plant height and height CV at Rochester (silt loam, well drained).

	Grain	Grain	Plant	CV of		
Effects of starters	H ₂ O	Yield	height	height		
	%	bu/A	inch	%		
APP (10-34-0) in-furrow						
None	19.1 a	219 a	31.1 b	6.6 a		
4 gal/A	18.5 a	219 a	33.4 a	6.2 a		
UAN (28-0-0) surface dribb	le band	l				
None	19.0 a	218 a	31.7 b	6.5 a		
8 gal/A	18.6 a	220 a	32.7 a	6.2 a		
ATS (12-0-0-26) surface dribble band						
None	19.0 a	218 a	31.9 a	6.7 a		
2 gal/A	18.7 b	219 a	32.3 a	6.2 a		
4 gal/A	18.7 b	220 a	32.5 a	6.2 a		

Funding provided by the Fluid Fertilizer Foundation

• APP in-furrow

- Increased grain yield 1 of 4 yr and decreased 1 of 4 yr (high STP sites, not high pH).
- reduced grain moisture in 2 of 4 yr
- UAN as a surface band
 - reduced grain moisture in 2 of 4 yr.
 - Increased corn grain yield in 1 of 4 yr
- ATS in a surface band
 - reduced grain moisture (4-yr avg.)
 - increased grain yield in 1 of 4 yr

Summary of liquid starters in continuous corn

- Generally, starter fertilizers containing N, P and S applied as UAN, APP, and ATS increased early growth and reduced plant to plant variability in a reduced tillage system.
- N, P and S starter fertilizers often reduced grain moisture at harvest.
- Yield responses to fluid starters were inconsistent during this study period, however drought increased yield variability in 2 of 4 yr at Waseca.
- Responses were more likely on poorly drained glacial till soils.
- NOTE: S yield response may be reduced with high rates of MAP, DAP or TSP as they often contain up to 1.5 to 2% S.

• Ex: Applying 150 lb P_2O_5 /ac as MAP or DAP supplies about 5–6 lb S/ac.

Funding provided by the Fluid Fertilizer Foundation

UNIVERSITY OF MINNESOTA Driven to Discover[™]

Corn yield response to liquid starter with or without broadcast P fertilization (Kaiser and Mallarino, 2005)

Effect of residual fertilizer P application on next year soybean yield (Kaiser and Mallarino, 2005)

Increasing Trend, but was not considered significant

Minnesota**Corn**

243

Funding provided by the Fluid Fertilizer Foundation

UNIVERSITY OF MINNESOTA Driven to Discover⁵⁵⁴

Relative yield as affected by the interaction between broadcast and starter P rates.

htaCorn

Funding provided by the Fluid Fertilizer Foundation

UNIVERSITY OF MINNESOTA Driven to Discover⁵⁵⁴

Relative yield as affected by broadcast and starter P rates across soil test P classes.

Funding provided by the Fluid Fertilizer Foundation

UNIVERSITY OF MINNESOTA Driven to Discover⁵⁴⁴

Summary of N+P starter with vs without broadcast P

- Iowa data: When STP was very low, low or optimum
 - Starter alone provided 50-75% of the corn yield response to P
 - Broadcast produced greater corn yields than starter alone
 - Broadcast + starter not significantly greater
 - Next year soybean yield greater with broadcast
- Iowa data: When STP was high or very high
 - Starter produced yields equal to broadcast
 - IMPLICATIONS for when fertilizer prices are high

Summary of N+P starter with vs without broadcast P

- **MN data:** When STP was low (4–7 ppm Olsen)
 - Starter alone increased yields but not as much as broadcast
 - Starter + broadcast had greatest yields
 - No starter rate response
- MN data: When STP medium (8-11 ppm Olsen)
 - Starter produced yields equal to broadcast
 - Starter + broadcast had greatest yields
- **MN data:** When STP high (>12 ppm Olsen)
 - Starter produced yields equal to broadcast
 - IMPLICATIONS for when fertilizer prices are high

Summary: Where do liquid starters fit in 4R mgt?

- Tillage system: no-till, reduced till & strip-till corn
 - N, P & S applied surface dribble or N&P in-furrow
- Crop rotation: corn after corn/small grains vs soybean
 - N, P & S for corn after corn/small grain surface dribble
- Soil characteristics: poorly drained and high/low pH
 - N, P & S surface dribble on poorly drained soils; N&P in-furrow for high (>7.5) or low (<5.6) pH soils
- High rates of broadcast P often reduce starter P response
- Soil test P levels: low, medium/optimum or high very high
 - In-furrow starter + broadcast P produces greatest yield on low and medium/optimum P testing soils.
 - <u>\$20 of in-furrow N&P starter = \$100 of MAP/DAP on high P testing soils</u>

Acknowledgments and contact info

- Funding for this research was provided by
 - AFREC (MN fertilizer check-off),
 - the Fluid Fertilizer Foundation,
 - MCR&PC (MN corn check-off),
 - industry partners (as noted in slides) and
 - the University of Minnesota.

Jeffrey Vetsch **Researcher 4** Southern Research and **Outreach Center** jvetsch@umn.edu Follow on Twitter @ jvetsch2

UNIVERSITY OF MINNESOTA Driven to Discover®

Crookston Duluth Morris Rochester Twin Cities

The University of Minnesota is an equal opportunity educator and employer.